More information

Tilman Rachner Group

Metabolic and signalling pathways as targets for personalized cancer therapies in breast and prostate cancer

Portrait Tilman Rachner

Signalling pathways control cell and tissue growth during development and regeneration. One of these critical pathways is Wnt signalling, which is particularly involved in bone remodelling and skeletal homeostasis. Mutations and hyperactivation of Wnt signalling proteins and regulators are implicated in tumorigenesis. Dickkopf-1 (DKK-1) is a secreted, negative regulator of WNT signalling and blocks the differentiation of bone-building osteoblasts. High levels of DKK-1 are associated with osteolytic bone metastasis in multiple myeloma and breast cancer. However, additional effects of DKK-1 in cancer, apart from its role in bone biology, have been identified. These include the mediation of stress resistance mechanisms, modulations of cell cycle regulators, and the recruitment of tumor-promoting myeloid-derived suppressor cells into the tumor microenvironment.

Current research of our team explores the potential of DKK-1 as a target in personalized and precision therapy of human cancers. Using different approaches ranging from in vitro analyses to complex in vivo models and utilizing our close interaction with clinical work (biobanking, tissue samples etc), we assess the biological relevance of DKK-1 in malignant progression. These aspects include the investigation of the role of DKK-1 in tumor cell survival, signalling pathways, inflammation, stress and treatment resistance, as well as the metastasis to bone. In the past, we were able to demonstrate, that DKK-1 expression is increased in human breast cancer and can be targeted by blocking the mevalonate pathway using statins and amino-bisphosphonates. Moreover, we have shown that DKK-1 is regulated by p38 MAPKs in human prostate cancer cells and is a prognostic marker in clinical prostate cancer.

In addition, we have focussed our work on elucidating the potential of the mevalonate pathway as a therapeutic target in breast and prostate cancer by investigating the effects of statins and amino-bisphosphonates on tumor cell vitality, apoptosis and signalling pathways. In this regard, we currently identified one statin resistance mechanism in human breast cancer cells. Having access to a number of different, well established serum cohorts within our extensive biobank we are also assessing proteins for their potential as prognostic biomarkers in a range of malignancies. In this field, we published several studies on novel prognostic markers in bone-seeking malignancies and on the effects of endocrine therapies, such as tamoxifen, on important players in bone homeostasis, including DKK-1.

Tilman Rachner Research: Figure
Fig.1: Dickkopf-1 expression is increased in tissue and serum of patients with breast cancer. Left: Dickkopf-1 (DKK-1) expression was assessed in a breast cancer tissue microarray (TMA) consisting of 74 breast cancer samples and 10 normal tissues. The TMA was stained with an antibody directed against human DKK-1 and staining was graded from none (0) to strong (3). Right: DKK-1 serum levels are elevated (P = 0.006) in patients with estrogen receptor (ER)-negative breast cancer (n = 28) or in healthy controls (n = 27). (Rachner et al. 2014)

Future Projects and Goals

  • Identify breast cancer patient subpopulations that would mostly benefit from an anti-DKK-1 targeted therapy
  • Evaluating the potential link between DKK-1, tumor cell metabolism and glutamine dependence in cancer
  • Assessing the role of DKK-1 in endocrine resistance of prostate cancer cells

Methodological and Technical Expertise

  • Mouse models of cancer
  • Mouse models of bone metastases
  • Bone analyses incl. µCT


Since 05/2020
Mildred Scheel Early Career Center (MSNZ) research group leader affiliated with the Department of Endocrinology, Diabetes and Metabolic Bone Disorders, Medical Department III, University Hospital Dresden (UKD)

Since 2020
Senior Consultant for Internal Medicine, UKD

Board certification Endocrinology

Habilitation Internal Medicine

Board certification Internal Medicine

Since 2018
Associate Consultant for Internal Medicine, UKD

Since 2014
Junior Group leader at the Department of Endocrinology, Diabetes and Metabolic Bone Disorders, Medical Department III, UKD

Resident in the Department of Endocrinology, Diabetes and Metabolic Bone Disorders, Medical Department III, UKD

Medical doctorate in the laboratory of Prof. Hofbauer, Department of Endocrinology, Philipps-Universität, Marburg

Medical Studies, Philipps-Universität, Marburg

More Information

Bone Lab Dresden

Selected Publications

Rachner TD, Göbel A, Hoffmann O, Erdmann K, Kasimir-Bauer S, Breining D, Kimmig R, Hofbauer LC, Bittner AK
High serum levels of periostin are associated with a poor survival in breast cancer.
Breast Cancer Res. Treat.; 180:515–24 (2020)

Rachner TD, Coleman R, Hadji P, Hofbauer LC
Bone health during endocrine therapy for cancer.
Lancet Diabetes Endocrinol.; 6:901–910 (2018)

Rachner TD, Kasimir-Bauer S, Göbel A, Erdmann K, Hoffmann O, Browne AJ, Wimberger P, Rauner M, Hofbauer LC, Kimmig R, Bittner AK
Prognostic value of RANKL/OPG serum levels and disseminated tumor cells in non-metastatic breast cancer.
Clin Cancer Res; 25:1369–1378 (2019)

Rachner TD, Göbel A, Thiele S, Rauner M, Benad-Mehner P, Hadji P, Bauer T, Muders MH, Baretton GB, Jakob F, Ebert R, Bornhäuser M, Schem C, Hofbauer LC
Dickkopf-1 is regulated by the mevalonate pathway in breast cancer.
Breast Cancer Res. 16:R20 (2014)